Discriminative Face Hallucination via Locality-Constrained and Category Embedding Representation

نویسندگان

چکیده

Recent years have witnessed the rapid development of face image hallucination techniques. However, previous methods are unsupervised and ignore label information training samples, leading to undesirable results. This article proposes a locality-constrained category embedding representation (LCER) method super-resolve in supervised manner by data representation. The proposed LCER incorporates locality prior into one unified framework, which aims learn both advantages preserving true typologic structure manifold discriminability exposing class subspace information. Such strategy allows not only preserve more sharpen details but also guarantee pattern be transferred mainly from same subject super-resolution reconstruction. Extensive experiments were conducted evaluate LCER, comparative results demonstrate that it achieved superior performance quantitative measurements visual impressions compared several state-of-the-art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest feature line embedding for face hallucination

A new manifold learning method, called nearest feature line (NFL) embedding, for face hallucination is proposed. While many manifold learning based face hallucination algorithms have been proposed in recent years, most of them apply the conventional nearest neighbour metric to derive the subspace and may not effectively characterise the geometrical information of the samples, especially when th...

متن کامل

Learning locality-constrained collaborative representation for robust face recognition

The model of low-dimensional manifold and sparse representation are two well-known concise models that suggest each data can be described by a few characteristics. Manifold learning is usually investigated for dimension reduction by preserving some expected local geometric structures from the original space to a low-dimensional one. The structures are generally determined by using pairwise dist...

متن کامل

Tuning Sparsity for Face Hallucination Representation

Due to the under-sparsity or over-sparsity, the widely used regularization methods, such as ridge regression and sparse representation, lead to poor hallucination performance in the presence of noise. In addition, the regularized penalty function fails to consider the locality constraint within the observed image and training images, thus reducing the accuracy and stability of optimal solution....

متن کامل

Face Hallucination Using Sparse Representation Algorithm

Face Hallucination is a super-resolution technique to obtain high-resolution facial images by taking low-resolution facial images as input. In this paper problem of face hallucination has been approached by using sparse Representation. The image has to be subdivided into different segments so that image pixel information can be retrieved easily from each segment. Each small patch of the image h...

متن کامل

Face recognition via collaborative representation based multiple one-dimensional embedding

This paper presents a novel classifier based on collaborative representation and multiple onedimensional embedding with applications to face recognition. To use multiple 1-D embedding (1DME) framework in semi-supervised learning is first proposed by one of the authors, J. Wang, in 2014. The main idea of the multiple 1-D embedding is the following: Given a high-dimensional data set, we first map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on systems, man, and cybernetics

سال: 2021

ISSN: ['1083-4427', '1558-2426']

DOI: https://doi.org/10.1109/tsmc.2020.2965572